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New neural network cloud mask algorithm based on
radiative transfer simulations

Nan Chen1,⇤, Wei Li1,, Charles Gatebe2,, Tomonori Tanikawa3,, Masahiro
Hori4,, Rigen Shimada4,, Teruo Aoki5,, Knut Stamnes1,

Abstract

Cloud detection and screening constitute critically important first steps required

to derive many satellite data products. Traditional threshold-based cloud mask

algorithms require a complicated design process and fine tuning for each sensor,

and they have di�culties over areas partially covered with snow/ice. Exploit-

ing advances in machine learning techniques and radiative transfer modeling of

coupled environmental systems, we have developed a new, threshold-free cloud

mask algorithm based on a neural network classifier driven by extensive radiative

transfer simulations. Statistical validation results obtained by using collocated

CALIOP and MODIS data show that its performance is consistent over di↵er-

ent ecosystems and significantly better than the MODIS Cloud Mask (MOD35

C6) during the winter seasons over snow-covered areas in the mid-latitudes.

Simulations using a reduced number of satellite channels also show satisfactory

results, indicating its flexibility to be configured for di↵erent sensors. Compared

to threshold-based methods and previous machine-learning approaches, this new

cloud mask (i) does not rely on thresholds, (ii) needs fewer satellite channels,

(iii) has superior performance during winter seasons in mid-latitude areas, and

(iv) can easily be applied to di↵erent sensors.
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1. Introduction1

1.1. Background2

A reliable cloud mask is essential for satellite remote sensing of land, ocean,3

or cryospheric properties. Due to the significant impact of clouds on shortwave4

and longwave radiation, mis-identification of cloudy pixels as surface or vice5

versa can significantly a↵ect the quality of any satellite remote sensing product.6

Traditionally, threshold-based tests have been employed in many cloud mask7

algorithms. Such algorithms include the Automated Cloud Cover Assessment8

(ACCA) algorithm (Irish et al., 2006) applied to the Landsat ETM+ sensor,9

the cloud tests applied in the MOD35 algorithm (Ackerman et al., 2010) for the10

moderate-resolution imaging spectroradiometer (MODIS) sensor and the Clouds11

from AVHRR (CLAVR) (Stowe et al., 1999) as well as its extension CLAVR-12

x algorithm. These algorithms typically use a combination of threshold tests,13

which employ a number of satellite channels located in the visible (VIS), near14

infrared (NIR), shortwave infrared (SWIR), and thermal infrared (TIR) wave-15

length ranges (e.g. MOD35 uses 19 bands – 10 reflectance bands and 9 thermal16

infrared bands) to detect clouds and snow/ice. The thresholds used in these tests17

are generally from 1) model simulations, 2) statistics of cloud/clear-sky scenes,18

and 3) expert experience. New algorithms, such as fmask (Zhu & Woodcock,19

2012; Zhu et al., 2015), employ dynamic thresholds derived from object-based20

cloud and cloud shadow statistics. In our previous work (Chen et al., 2014), a21

model based dynamic threshold method was developed, tested, and shown to22

have superior performance compared to the MODIS MOD35 algorithm over the23

snow-covered Greenland Plateau.24

Because of the similarity of cloud and snow/ice optical properties in VIS and25

near NIR channels, snow detection has always been essential in cloud mask algo-26

rithm designs. Indices for mapping snow cover using VIS and SWIR data were27
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developed in the mid-1970s. The Normalized Di↵erence Snow Index (NDSI)28

was introduced by Hall et al. (1995) to map snow using MODIS data. Prior29

to that, Dozier (1987, 1989) used a VIS/SWIR index algorithm to map snow30

based on Landsat data. Most threshold-based cloud mask algorithms will use31

NDSI in their processing chain (Ackerman et al., 1998, 2010; Irish et al., 2006;32

Zhu & Woodcock, 2012) for cloud screening, which highlights the importance33

of snow detection since its accuracy will also a↵ect that of cloud detection.34

Enhanced computational power and improvements in machine learning tech-35

niques have allowed machine learning algorithms, such as decision trees, logis-36

tic regressions, support vector machines, and artificial neural networks, to be37

used for cloud masking and snow/ice detection. Taravat et al. (2015) used a38

multi-layer perceptron neural network model to detect clouds in Landsat im-39

ages. Hollstein et al. (2016) compared several methods, including decision tree,40

classical Bayesian, random forest, support vector machine, and stochastic gra-41

dient descent, applied to Sentinel-2 MultiSpectral Instrument (MSI) images.42

Hughes & Hayes (2014) used a neural network based method trained with a43

subset of the United States Geological Survey Landsat Data Continuity Mission44

(USGS LDCM) Cloud Cover Assessment Data (Scaramuzza et al., 2012) and a45

comparison with fmask (Zhu & Woodcock, 2012) showed favorable results.46

Bayesian methods have shown significant improvements over threshold based47

methods. Notably, model based Bayesian statistical methods have shown that48

simulated datasets can be used as a predictor to improve the cloud detection49

accuracy. Merchant et al. (2005) first applied this method for cloud screening50

over ocean areas in order to retrieve sea surface temperature. Bulgin et al.51

(2014), and Bulgin et al. (2018) extended this method to be applied over land52

areas. In these studies, manually classified datasets were used for validation.53

An automatic Bayesian classifier, derived using collocated AVHRR and CALIOP54

data by Andrew K. Heidinger et al. (2012), showed improvements over threshold-55

based methods and the ability to derive uncertainties in the cloud masking56

process. The dependence on CALIOP data to derive posterior cloud probability57

was also introduced in this paper.58
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Recently, a support vector machine (SVM) approach has been used in the59

latest CLAUDIA3 algorithm (Ishida et al., 2018). High quality training datasets60

are essential to machine-learning-based methods and manually-generated datasets61

such as the ACCA reference dataset (Irish et al., 2006) and the Sentinel-262

MSI dataset constructed by Hollstein et al. (2016) are often used by current63

machine-learning-based cloud detection schemes. In Ishida et al. (2018) the64

training dataset for the SVM classification is also selected subjectively from ac-65

tual satellite measurements by carefully examining the typical surface type and66

eliminating irregular data.67

1.2. Limitations of traditional methods68

Traditional threshold-based cloud mask methods still face serious challenges69

over snow- and ice-covered areas, especially in Arctic and sub-arctic regions70

where there are frequent temperature inversions (a↵ecting TIR-based tests) and71

over mid-latitude regions where the reflected signal is often from pixels with72

mixed snow and vegetation/soil cover. In order to handle such complicated73

surface conditions, the threshold-based logic becomes increasingly complex (as74

can be seen in plates 1-5 of Irish et al. 2006) and a large number of satellite75

channels is often required. Sometimes these tests will produce conflicting results76

and additional “clear restoral tests” are needed (Ackerman et al., 2010) to avoid77

mis-classification. The need to detect possible snow-covered areas also adds78

uncertainty to the results. As reported by Wang et al. (2008), mis-classifications79

of snow-covered areas as “cloud” or vice versa are still a serious problem in80

results produced by traditional threshold-based methods such as the MODIS81

cloud mask as will be shown in Section 3.82

Machine learning methods, on the other hand, generally have no depen-83

dence on thresholds and do not rely on detecting snow before cloud screening.84

However, the dependence on manually-generated datasets has limited the de-85

velopment and operational use of machine learning based algorithms. It is dif-86

ficult to generate a reliable training dataset due to the large amount of human87

resources needed to classify hundreds of images with millions of pixels. The88
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limited amount of manually-classified images also makes it hard to cover all89

possible solar/viewing geometries, which limits the operational use of trained90

algorithms. Most importantly, manually-classified images are usually available91

only post-launch. This circumstance impedes pre-launch evaluation of algorithm92

performance and makes its application to a di↵erent sensor di�cult.93

2. New approach94

In this paper, we present a new machine-learning based approach to cloud95

and snow detection and discrimination to overcome the limits of previous meth-96

ods. Instead of using manually-generated datasets, we simulate the train-97

ing dataset needed by machine learning algorithms. Compared to manually-98

generated training data based on actual measurements, simulated training data99

have the following advantages:100

• There is no need for humans to identify hundreds of images with millions101

of pixels, which greatly saves human e↵ort.102

• The number of training samples can be as large as desired/needed, which103

can help avoid overfitting problems and be used to fully explore the po-104

tential of machine learning techniques.105

• The training dataset can cover the full range of possible solar/viewing106

geometries.107

• The algorithm can easily be modified for application to di↵erent sensors;108

only new training datasets are needed.109

In order to create such a training dataset, it is necessary to take into account the110

interaction of incident solar radiation with di↵erent types of surfaces, aerosols111

and clouds. This requirement implies that it is crucially important to have112

access to a comprehensive radiative transfer model. In order to simulate the113

reflectance from complex land surfaces, we constructed such a model; the details114

are provided in the following section.115
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2.1. Radiative transfer simulations116

In order to simulate the light signal received by a satellite instrument, we117

need to solve the radiative transfer equation (RTE) pertinent for light propaga-118

tion in the coupled atmosphere-surface system. The di↵use radiance I(⌧, ✓,�)119

at wavelength � is found by solving the following RTE:120

µ
dI(⌧, ✓,�)

d⌧
=I(⌧, ✓,�)� $(⌧)F0e�⌧/µ0

4⇡
p(⌧, ✓0,�0; ✓0,�0)

� $(⌧)

4⇡

Z 2⇡

0
d�0

Z 1

�1
dµ0p(⌧, ✓0,�0; ✓,�)I(⌧, ✓0,�0).

(1)

Here F0 is the incident top-of-the-atmosphere (TOA) solar irradiance (normal121

to the beam), while the di↵erential optical depth d⌧ = �(↵ + �)dz, the sin-122

gle scattering albedo $ = �/(↵ + �) = �/�, and the scattering phase func-123

tion p(⌧, ✓0,�0; ✓,�) are the inherent optical properties (IOPs) of the scatter-124

ing/absorbing medium. Note that we have used the Greek letters ↵, �, and125

� = ↵ + � to denote the absorption, scattering, and extinction coe�cients, re-126

spectively. ✓0 and �0 represent solar zenith and azimuth angles, µ0 = cos ✓0;127

✓0 and �0 are sensor zenith and azimuth angles prior to a scattering event, and128

✓ and � the corresponding angles after the scattering event, µ = cos ✓. In129

our training dataset, the TOA bidirectional reflectance factor (hereafter sim-130

ply referred to as the reflectance), defined as R(⌧, ✓,�) = ⇡I(⌧, ✓,�)/F0 cos ✓0,131

is simulated using the latest version of the DISORT radiative transfer model132

(RTM) (DISORT 4.0, Lin et al. 2015; Stamnes et al. 1988, 2017) employing the133

sub-band IOP method developed by Chen et al. (2017) to improve the accuracy134

in SWIR channels.135

136

2.1.1. Atmosphere IOPs137

We used the U.S. Standard atmosphere constituent profiles (Anderson et al.,138

1986) divided into 14 layers to provide input to a band model based on MOD-139

TRAN [see for example, Stamnes et al. (2017) for details] to generate absorption140

coe�cients and optical depths due to atmospheric trace gases including H2O,141
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CO2, O3, CH4, and NO2. Layering is needed to resolve the vertical variation in142

the IOPs, and experience has shown that 14 layers is su�cient for this purpose.143

Molecular (Rayleigh) scattering optical depths are computed from the Rayleigh144

scattering cross section (Stamnes et al., 2017) multiplied by the bulk density145

of air available from Anderson et al. (1986). The aerosol IOPs are tabulated146

from the output of the OPAC aerosol model (Hess et al., 1998). Liquid water147

clouds are assumed to consist of a polydispersion of spherical particles and the148

IOPs are calculated from Mie-Debye theory (Mishchenko et al., 2002) using the149

refractive index of water from Segelstein (1981). For ice clouds the IOPs are150

tabulated from the “general habit mixture” model in the bulk scattering and151

absorption models of Baum et al. (2011). Clouds are assumed to have a thick-152

ness of 2 km. The cloud base height is assumed to be 2 km above the surface153

for liquid water clouds. For ice clouds the cloud base height is assumed to be154

at 8 km regardless of the surface elevation.155

2.1.2. Surface IOPs156

In order to simulate the TOA reflectance from di↵erent land surface types,157

we used the Soil-Leaf-Canopy (SLC) model (Verhoef & Bach, 2007) in conjunc-158

tion with our DISORT RTM. The bidirectional reflectance distribution function159

(BRDF) output from the SLC model is used as the lower boundary condition160

in DISORT. Figure 1 shows the bottom-of-the-atmosphere (BOA) reflectance161

in the nadir direction of di↵erent types of green and brown vegetation with un-162

derlying soil type = 1 (representing a type of ploughed soil) as simulated by the163

SLC model. By changing the parameters such as the Leaf Area Index (LAI),164

brown vegetation fraction (fb) or soil type, the reflectance from various types of165

green/brown vegetations as well as bare soil can be simulated. Snow particles166

were assumed to be ice spheres with the refractive index of ice obtained from167

Warren & Brandt (2008). The monochromatic IOPs can be calculated from Mie-168

Debye theory once the size distribution is specified or from a parameterization169

in terms of e↵ective snow grain size (Stamnes et al., 2011).170
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Figure 1: Bottom-of-the-atmosphere (BOA) spectral reflectance in the nadir direction as a

function of LAI from green vegetation (left) and brown vegetation (right). The incident solar

zenith angle was set to 30� in these simulations.

2.1.3. Reflectance for mixed snow/vegetation/soil cases and high elevation areas171

In order to better handle the case of fractional snow cover, we adopted the172

following linear mixing rule for the reflectance of pixels with snow fraction, f :173

174

Rmix = (1� f)⇥Rland + f ⇥Rsnow.175

By randomly changing the snow fraction f and snow/land parameters, we can176

simulate the TOA reflectance for a variety of snow-mixed-vegetation/soil cases.177

In order to handle the change of TOA reflectance with surface elevation, we sim-178

ulated the TOA reflectance by assuming the surface elevation to be at randomly179

generated heights between 0 and 1000 m. For snow areas at very high elevations180

such as in Greenland and Antarctica, we extended the surface elevation range181

in our simulations to be between 0 and 4000 m.182

2.1.4. TOA reflectance for clear-sky and cloudy cases183

Figure 2 shows examples of TOA reflectances obtained from our radiative184

transfer simulations for di↵erent surface types under di↵erent cloud optical185

depths (COD). It can be seen that cloudy cases have di↵erent TOA reflectances,186

which depend on the underlying surface type. Due to highly conservative na-187
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ture of cloud scattering in the VIS and NIR wavelength region (single-scattering188

albedo close to 1 for cloud particles, see for example Yang et al. 2013), a con-189

siderable amount of solar radiation will reach the surface even for a moderately190

thick cloud (optical depth of 10) and the reflected signal from the surface will191

contribute significantly to the TOA reflectance (see for example Chapter 13 of192

Petty 2006 for details). Hence, the inclusion of surface reflection is very im-193

portant for cloudy-sky simulations. In the latest MODIS Collection 6 cloud194

products (Amarasinghe et al., 2017), a Cox-Munk based surface BRDF model195

was used to account for the significant contribution from the ocean surface.196

Over land the surface was assumed to act as a Lambertian reflector, so that the197

total reflectance can be expressed as a sum of the value for a black surface plus198

an algebraic correction term proportional to the Lambertian surface albedo (see199

Eq. (5) in Amarasinghe et al. 2017), which may lead to significant errors when200

the BRDF of the underlying surface is very anisotropic (such as for snow). In201

our radiative transfer simulation dataset a rigorous surface BRDF treatment is202

implemented for vegetation, soil, and snow, which avoids the potential problem203

of assuming Lambertian reflection from the land surface. The dependence of204

the TOA reflectance on surface reflectance also means that we need to cover205

as many surface types as possible to establish a comprehensive dataset, which206

can represent most cases, and this diversity could be a challenge to our machine207

learning scheme. One can also observe that for very thin clouds (cloud optical208

depth < 0.5) the change in reflectance compared to the clear-sky cases is usually209

very small. This circumstance indicates a possible limitation of cloud detection210

using reflectance channels and that thermal infrared channels may be needed to211

distinguish such thin clouds from the underlying surface.212

2.2. Neural network training213

The training dataset for our machine-learning based algorithm consists of214

a large number of clear-sky and cloudy cases designed to cover as many sur-215

face types and solar/viewing geometries as desired for adequate representation216

of possible combinations encountered in nature. Atmosphere and surface pa-217
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Figure 2: Simulated MODIS TOA spectral reflectance in the nadir direction for di↵erent clear

sky (COD = 0.0) and cloudy cases (COD > 0.0). The surface types are snow (top left), soil

(top right), green vegetation (bottom left) as well as brown vegetation (bottom right). The

cloud optical depths were assumed to be 0.5, 1.0, 5.0 and 10.0 at 555 nm wavelength. The

incident solar zenith angle was set to 30� in these simulations.

rameters such as aerosol/cloud optical depth, leaf area index (LAI), fraction218

of brown vegetation (fb), and snow grain size were considered to be free pa-219

rameters allowed to vary within realistic ranges (see Table 1). For clear sky220

conditions a large number of di↵erent cases were randomly selected in order221

to represent a large variety of soil, vegetation, and aerosol combinations in the222

training dataset. Similarly, for any given surface and clear sky condition a223

large number of water/ice cloud optical depths were randomly selected to simu-224

late corresponding TOA reflectances. The simulated reflectances in six satellite225

channels (0.47, 0.55, 0.66, 0.86, 1.24, 2.13 µm, for MODIS/Aqua) obtained in226

this manner, together with solar zenith, viewing zenith, relative azimuth angle,227

and surface elevation serve as the input parameters to the algorithm.228
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Parameter range unit comment

SZA 0.0 - 85.0 degrees solar zenith angle

VZA 0.0 - 65.0 degrees viewing zenith angle

RAZ -180.0 - 180.0 degrees relative azimuth angle

LAI 0.0 - 4.0 leaf area index

fb 0.0 - 1.0 brown vegetation fraction

soil code 0 - 22 soil type in SLC model

AOD 0.0 - 1.0 aerosol optical depth

CODw 0.5 - 50.0 cloud optical depth (water clouds )

CODi 0.5 - 20.0 cloud optical depth (ice clouds )

re↵ 50 - 2000 µm snow grain size

f 0.0 - 1.0 snow fraction

Table 1: Parameters and their range in the training dataset.

In this way, over 20 million samples were generated and used to train a229

binary (cloudy/clear) neural network classifier employing a simple multilayer230

perceptron scheme with one hidden layer of 10 neurons. The sigmoid function231

� = 1/(1+e�z) was used as the activation function for all layers. We performed232

random permutations to our dataset and then divided it into two parts: 75%233

of the total number of cases was used in training and the remaining 25% was234

used in validation. After a su�cient number of iterations (usually about 200)235

the accuracy for both the training and validation dataset was usually between236

98.5% and 99.2%, which means that we had achieved adequate accuracy while237

avoiding overfitting. The trained neural network can process one MODIS image238

(which typically contains 2030⇥1354 = 2.7M pixels) in less than two seconds.239

The main parameters of the simulations and their range of variation are listed240

in Table 1 and a flowchart of the new Snow-ice Cloud mask (SCM) algorithm241

is shown in Fig. 3.242
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Figure 3: Flowchart of the SCM algorithm.

3. Results and validation243

In this section we will apply the trained neural network classifier to MODIS244

images and validate its performance over di↵erent land regions. We first tested245

the SCM using the aforementioned 6-channel configuration to simulate its per-246

formance on sensors such as the Second-Generation Global Imager (SGLI) on247

GCOM-C (Japan) and Visible Infrared Imaging Radiometer Suite (VIIRS) on248

board the Suomi National Polar-orbiting Partnership (Suomi NPP) weather249

satellite. In comparison to MODIS these sensors lack many TIR bands so that250

the performance achieved by using mainly reflectance bands becomes a matter251

of significant importance. However, since SGLI has two thermal IR bands (11252

and 12 µm) we also explored the advantage of employing a dynamic threshold253

split-window test similar to that used by Wilson & Oreopoulos (2013) (Figure254

2) to improve the sensitivity to thin cirrus clouds.255

3.1. Results over Mid-latitude land areas: Comparison with MODIS images256

Figure 4 shows some examples of cloud detection results produced by SCM257

and comparisons with similar results produced by Collection 6 of the MODIS258

cloud mask (MOD35 C6). The clouds detected by MOD35 are shown in white259
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(confident cloudy) and grey (probably cloudy) colors. The cloud detection by260

the SCM algorithm is binary, which means that only cloudy (shown in white)261

and clear-sky over land (shown in green) identifications are provided. A color262

scheme (using MODIS channel 1-6-32 as R-G-B) identical to that of Hutchison263

et al. (2013) was used for false color RGB plots in Fig. 4. In this scheme, clouds264

generally look white (warm low clouds) and yellow (cold ice clouds), while snow-265

covered areas usually look pink, due to their relatively low SWIR reflectance266

compared to that of clouds.267

From the comparisons, one can see that in general SCM and MOD35 C6 have268

similar cloud detection capabilities over non-snow-covered land areas, which in-269

clude vegetated land areas over Europe and the Sahara desert in North Africa270

(bottom panels of Fig. 4). These comparisons show that the neural network271

based SCM algorithm can capture the spectral signature of various land sur-272

faces including various types of vegetation as well as bright desert areas and273

distinguish them from clouds. Such discrimination was typically di�cult for274

many previously employed cloud mask algorithms. For pure snow-covered ar-275

eas such as the Greenland Plateau, the performance of SCM and MOD35 are276

also similar (the top panels of Fig. 4), which means that the neural networks277

employed in SCM perform well over high-elevation snow-covered areas. The de-278

cline in performance for both algorithms in spring/autumn seasons is probably279

due to the very high solar zenith angles (usually greater than 80�) and reduced280

number of samples. However, the situation changes over snow-covered areas281

in mid-latitude regions. In the middle panels of Fig. 4 one can see that large282

amounts of clear-sky snow pixels (pink in false color RGB) are mis-classified283

as cloudy pixels by MOD35 whereas SCM provides correct identifications. The284

complicated snow-vegetation-soil mixing conditions created considerable di�-285

culty for the threshold tests in the MOD35 algorithm, as one can see that the286

mis-classifications are mostly along the edges of snow areas.287

3.2. Statistical validation using CALIOP288

The validation of previous machine learning based algorithms is limited to289

13



image-based statistics based on use of human-identified images selected from dif-290

ferent locations and seasons as benchmarks. Due to the large amount of pixels291

to be classified by humans, it is di�cult to achieve the spatial and temporal cov-292

erage needed for a comprehensive evaluation of the e↵ectiveness of a cloud mask293

algorithm. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)294

is a lidar onboard the CALIPSO satellite that provides high-resolution vertical295

profiles of aerosols and clouds. CALIOP’s active cloud detection scheme com-296

bined with collocated Aqua MODIS data provide the most reliable assessment297

of cloud mask results currently available. We used collocated CALIOP and298

Aqua MODIS measurements employing CALIOP-detected cloudy/clear condi-299

tions for comparison in a similar manner as we did in Chen et al. (2014) over300

the snow-covered Greenland Plateau. Hence, the CALIOP 1 km cloud detection301

results were used as benchmarks. The whole year datasets for 2008 over East302

Asia, Europe, North America, and Greenland were used. The approximate ar-303

eas covered by these MODIS images are indicated by the green boxes in Fig. 5304

and roughly 2000 MODIS images were used for each site. Similar to what we305

did in Chen et al. (2014), we calculated and compared the hit rate (HR) and306

the Hanssen-Kuiper (True) Skill Score (TSS) of SCM and MOD35 (MYD35 for307

Aqua MODIS data). The HR and TSS are defined as308

HR =
Ncld,hit +Nclr,hit

Ntotal
(2)

and309

TSS =
(Ncld,hit ⇥Nclr,hit �Ncld,miss ⇥Nclr,miss)

(Ncld,hit +Ncld,miss)⇥ (Nclr,hit +Nclr,miss)
, (3)

where Ncld,hit, Nclr,hit, Nclr,miss, and Ncld,miss are defined in Table 2.310

Figure 6 as well as Table 3 show CALIOP validation results of SCM and311

MOD35. We included the results obtained by using the neural network only312

labeled “SCM (NN + only)” in Fig. 6. In general, the neural network test313

in SCM performs consistently over non-snow covered areas, achieving about314

80% HR and 65% TSS. Adding the thermal IR test can improve the HR and315
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Scenario SCM/MYD35

clear

SCM/MYD35

cloudy

CALIOP clear Nclr,hit Nclr,miss

CALIOP cloudy Ncld,miss Ncld,hit

Table 2: Contingency matrix of CALIOP versus SCM/MYD35.

TSS by 5% to 7%, but the performance is slightly lower compared to MOD35.316

These results indicate that there is some room for improvement of the SCM317

over non-snow covered areas, and the additional tests using bands in thermal318

IR wavelength range can significantly improve the identification of thin clouds,319

which are di�cult to identify solely by reflectance-based methods.320

Over the snow-covered Greenland Plateau area the two algorithms perform321

very closely with SCM (NN + BT) having a slight advantage during the sum-322

mer months. The advantage of adding the thermal IR test is relatively small,323

probably due to the conservative thresholds used. We found that it is insu�-324

cient to use only 2 thermal channels (10.8 and 12 µm) over the snow-covered325

Greenland Plateau and that more thermal IR channels such as the 3.7 µm is326

probably needed to further improve the result. The drop in both HR and TSS327

in the winter months may be associated with the reduced number of samples328

and larger solar zenith angles in these months. The biggest di↵erence is again329

found in mid-latitude areas during the winter season, where snow is frequently330

mixed with vegetation and soil. The TSS scores of MOD35 show a significant331

drop due to a much higher mis-classification rate of clear-sky cases, consistent332

with our image-based test results showing that MOD35 has di�culty handling333

complex snow-mixed-vegetation/soil scenes. It should be noted that sometimes334

MOD35 has a higher HR but a lower TSS compared to SCM (such as in January335

over North America). This behavior is due to the bias in the HR since there336

are generally more cloudy than clear-sky cases in our statistical sample, and337

the more comprehensive TSS captured the increase of Nclr,miss, which leads to338
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a mis-classification of clear-sky as cloudy cases by MYD35 compared to SCM339

in winter months, as seen in Table 3.340

3.3. Performance of a 3-channel configuration like the AVHRR-3 sensor341

Finally, we tested a special configuration to investigate the flexibility of342

the SCM for application to other sensors. Thus, instead of using the above343

mentioned six MODIS reflectance channels, we tried a 3-channel configuration344

(0.47, 0.66, and 2.13 µm) for the training of our algorithm in order to simulate345

its application to legacy sensors such as AVHRR-3. Figure 7 shows that this346

3-channel configuration can provide consistent although slightly inferior perfor-347

mance compared to the 6-channel configuration. These 3-channel results are still348

better than those provided by MOD35 in mid-latitude areas during the winter349

season. The use of simulated data for training allows us to assess the perfor-350

mance of algorithms based on machine learning techniques before the launch of351

a satellite, and to explore the most e↵ective combinations of satellite channels352

to be used for cloud masking.353

4. Discussion354

The SCM cloud screening tool described above is our first attempt to use355

a scheme based on comprehensive radiative transfer simulations combined with356

machine learning for cloud screening. Based on our experience gained so far357

with this methodology, we believe there are many aspects of this approach that358

can be improved. These include:359

• Constructing localized training datasets of clear-sky simulations which de-360

pends on local atmospheric and surface conditions. The current training361

dataset was simulated using fixed atmospheric constituent profiles as well362

as using randomly generated surface properties (soil type, green-brown363

vegetation ratio). Hence, in this paper, we have described a general ap-364

plication of the method using a generic set of atmospheric and surface365

parameters to demonstrate its usefulness on a global scale. In further366

applications it is completely possible to construct a training dataset that367

employs local surface parameters (soil type, vegetation type) if these pa-368
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Table 3: SCM and MYD35 statistics using CALIOP as the benchmark.

Month Location Total pixel
SCM statistics MYD35 statistics

Nclr,hit Nclr,miss Ncld,hit Ncld,miss HR(%) TSS(%) Nclr,hit Nclr,miss Ncld,hit Ncld,miss HR(%) TSS(%)

Jan.

GNLa 0 0 0 0 0 N/A N/A 0 0 0 0 N/A N/A

EUb 53731 14180 906 32737 5908 87.32 78.71 10152 4934 36748 1897 87.29 62.39

EAc 57678 27840 2504 19320 8014 81.76 62.43 16401 13943 25073 2261 71.91 45.78

NAd 78123 26453 1414 38664 11592 83.35 71.86 18796 9071 47014 3242 84.24 61.00

Feb.

GNL 0 0 0 0 0 N/A N/A 0 0 0 0 N/A N/A

EU 71145 19090 1220 41299 9536 84.88 75.23 15098 5212 47723 3112 88.30 68.22

EA 54456 29204 2997 16460 5795 83.85 64.65 17225 14976 20397 1858 69.09 45.14

NA 89715 35176 1749 38367 14423 81.97 67.94 24921 12004 48547 4243 81.89 59.45

Mar.

GNL 31135 12902 3619 10116 4498 73.93 47.32 11646 4875 10326 4288 70.57 41.15

EU 54593 13883 841 32227 7643 84.46 75.12 11323 3401 36845 3025 88.23 69.31

EA 39387 13667 1433 19737 4550 84.81 71.78 11912 3188 21603 2684 85.09 67.84

NA 71863 28065 2085 29350 12363 79.90 63.45 21542 8608 36258 5455 80.43 58.37

Apr.

GNL 41903 19858 2797 11270 7978 74.29 46.21 20224 2431 11552 7696 75.83 49.29

EU 76635 24105 1115 41869 9546 86.09 77.01 21196 4024 46032 5383 87.72 73.57

EA 55684 16782 1888 30687 6327 85.25 72.79 16209 2461 31757 5257 86.14 72.62

NA 94116 37586 2235 40793 13502 83.28 69.52 33106 6715 47331 6964 85.47 70.31

May

GNL 54366 23425 2455 18849 9637 77.76 56.68 22085 3795 20692 7794 78.68 57.98

EU 82032 25991 1615 44552 9874 85.99 76.01 24448 3158 47778 6648 88.05 76.35

EA 57357 16312 1903 33385 5757 86.65 74.84 16651 1564 33704 5438 87.79 77.52

NA 103848 30967 2325 58931 11625 86.57 76.54 29113 4179 63180 7376 88.87 76.99

Jun.

GNL 47081 17461 1740 20878 7002 81.43 65.82 16430 2771 22170 5710 81.99 65.09

EU 59560 19495 1434 31962 6669 86.40 75.88 19031 1898 33756 4875 88.63 78.31

EA 41193 9213 1527 26882 3571 87.62 74.06 9749 991 27041 3412 89.31 79.57

NA 78078 26079 2180 41140 8679 86.09 74.86 25176 3083 43332 6487 87.74 76.07

Jul.

GNL 52804 21032 1175 23877 6720 85.05 72.75 19402 2805 25375 5222 84.80 70.30

EU 73924 28486 1849 34569 9020 85.30 73.21 27905 2430 37228 6361 88.11 77.40

EA 50247 12268 2125 30803 5051 85.72 71.15 12768 1625 30986 4868 87.08 75.13

NA 92489 33188 1976 46690 10995 86.03 75.32 31985 3179 48957 8728 87.18 75.83

Aug.

GNL 40431 13844 740 21069 4778 86.35 76.44 13214 1370 21707 4140 86.37 74.59

EU 78525 29104 1318 38179 9924 85.68 75.04 28528 1894 41570 6533 89.27 80.19

EA 53886 16900 1698 29138 6150 85.44 73.44 17025 1573 30160 5128 87.56 77.01

NA 98767 37118 1557 48122 11970 86.30 76.05 36433 2242 51096 8996 88.62 79.23

Sep.

GNL 28970 7412 1008 16065 4485 81.04 66.20 7157 1263 16200 4350 80.62 63.83

EU 60527 15230 578 38856 5863 89.36 83.23 14503 1305 41627 3092 92.74 84.83

EA 45895 16739 1454 23243 4459 87.12 75.91 16259 1934 24197 3505 88.15 76.72

NA 73406 24993 1117 38205 9091 86.09 76.50 23989 2121 42030 5266 89.94 80.74

Oct.

GNL 21176 6296 1818 9966 3096 76.79 53.89 6136 1978 10384 2678 78.01 55.12

EU 75555 20031 655 45596 9273 86.86 79.93 18513 2173 50542 4327 91.60 81.41

EA 54653 21731 1202 25932 5788 87.21 76.51 19753 3180 28048 3672 87.46 74.56

NA 92471 32706 771 46849 12145 86.03 77.11 30827 2650 53204 5790 90.87 82.27

Nov.

GNL 0 0 0 0 0 N/A N/A 0 0 0 0 N/A N/A

EU 61436 18634 1087 35752 5963 88.52 80.19 15643 4078 39627 2088 89.96 74.32

EA 56730 30393 1298 18848 6191 86.80 71.18 24315 7376 22612 2427 82.72 67.03

NA 86324 24965 739 49112 11508 85.81 78.14 21513 4191 56644 3976 90.54 77.14

Dec.

GNL 0 0 0 0 0 N/A N/A 0 0 0 0 N/A N/A

EU 46213 10938 915 29789 4571 88.13 78.98 7681 4172 32843 1517 87.69 60.39

EA 58278 30802 2317 18012 7147 83.76 64.60 19968 13151 22814 2345 73.41 50.97

NA 77136 26854 471 37885 11926 83.93 74.33 19801 7524 46653 3158 86.15 66.12

a) GNL: Greenland

b) EU: Europe

c) EA: East Asia

d) NA: North America
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rameters are known for the area of interest. It will also be useful to improve369

the dynamic range of the clear sky simulations by introducing parameters370

such as relative humidity and atmospheric pressure. For applications to371

a given location for a given time of the year, it is possible to simulate a372

range of high accuracy clear-sky radiances to improve the discrimination.373

• Constructing a more realistic training dataset of cloudy-sky simulations.374

In the current simulation dataset we have for simplicity employed a fixed375

cloud height (2.0 km above the surface for liquid water clouds, 8.0 km for376

ice clouds). In future implementations the cloud levels and properties can377

be made more flexible to improve the cloudy/clear sky determination. The378

use of simulation dataset in combination with human identified dataset379

will also be interesting to investigate.380

• Adding additional thermal IR channels in the simulations. Currently we381

have not yet used simulations for thermal IR channels. Such simulations382

would involve a variety of di↵erent cloud properties as well as di↵erent383

surface emissivities. The use of thermal IR channels can not only help to384

improve the detection of optically thin clouds, but also extend our method385

to work during night time.386

• Using additional machine learning techniques to improve the performance.387

In this paper, we used a simple perceptron neural network model to per-388

form the cloudy/clear-sky determination because it is easy to train and389

implement. Other approaches, such as bagged decision trees, support390

vector machines, and/or Bayesian methods can also be used. In fact,391

preliminary tests indicate that a bagged tree model could achieve higher392

accuracy than the current neural network method. Testing/validation of393

such models using satellite data is currently in progress.394

As discussed above, our methodology and algorithm can certainly be improved395

and it is important that users in the remote sensing community can help fur-396

ther explore this approach. We are planning to create a version of our current397
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algorithm to be implemented (as a “plugin”) in ESA’s SNAP platform, and398

thereby make it available to the remote sensing community. We will also make399

our training dataset available on our website (http://lllab.phy.stevens.edu) to400

people who are interested in further exploring this methodology.401
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5. Summary402

A cloud mask and snow detection algorithm (SCM), based on machine learn-403

ing techniques, has been developed, described, and validated by collocated Aqua404

MODIS/CALIOP measurements over land areas. Instead of using a human-405

classified dataset derived from actual measurements, SCM uses a simulated406

dataset generated by extensive radiative transfer simulations to train the ma-407

chine learning algorithm. Compared to traditional methods, such as the MODIS408

cloud mask or other previous machine learning based algorithms, this new al-409

gorithm has the following features:410

• it simplifies the test logic and utilizes fewer satellite channels while being411

able to deliver consistent performance over di↵erent types of underlying412

surfaces in di↵erent seasons,413

• it has a low mis-classification rate of clear-sky cases, which yields a signif-414

icantly higher TSS score during the winter seasons over mid-latitude land415

areas when the surface is covered by snow mixed with vegetation/soil,416

• it performs similarly to the MODIS cloud mask over pure vegetation, soil417

and snow-covered areas,418

• it can easily be modified to be applicable to a new sensor configuration419

to assess its performance before the launch of a satellite because it relies420

entirely on simulated data for algorithm training. This feature facilitates421

exploring which satellite channels to use for cloud masking and retrieval422

of desired products before launch.423

Finally, we should point out that the aim of JAXA’s GCOM-C mission is424

to conduct global, long-term observations of the carbon cycle and radiation425

budget (Imaoka et al., 2010). The “Shikisai” satellite carrying GCOM-C was426

successfully launched in December 2017 and has started data transmission. The427

cloud mask algorithm described in this paper has been implemented in the data428

processing chain and will be used to retrieve cryospheric products consisting of429
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key parameters such as snow grain size, impurity concentration as well as snow430

cover extent.431
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True	color	RGB	 False	color	RGB	 SCM	 MOD35	

Figure 4: Cloud mask results for MODIS images. From top to bottom: Aqua MODIS image

over Greenland, July 9, 2015; Aqua MODIS image over Europe, January 18, 2008; Aqua

MODIS image over East Asia, January 24, 2003; Terra MODIS image over North Africa,

September 26, 2009. False color RGB images are composed by using 0.65 µm and 2.13 µm

reflectances and the 10.8 µm brightness temperature. Cloudy pixels are marked as white or

grey, clear-sky land pixels as green, and water areas are maked as blue. Clouds over water

areas are not marked.
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Figure 5: Validation areas used in this study.
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Figure 6: Hit rate (left) and Hanssen Kuiper Skill Score (right) of our cloud mask algorithm

(SCM) and MYD35 in 2008 over Greenland, Europe, East Asia, and North America.
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Figure 7: Hanssen Kuiper Skill Score of our cloud mask algorithm (SCM) and MYD35 in 2008

over East Asia (left) and Europe (right). Note the superior performance of the SCM in the

winter season.
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